医学分子生物学杂志 ›› 2026, Vol. 23 ›› Issue (1): 97-106.doi: 10.3870/j.issn.1672-8009.2026.01.014

• 医学教育 • 上一篇    

大语言模型在病例生成、个性化教学与评估中的研究进展

丛尚1,2#, 白沃涵1,3#, 陈钟4, 苏钰5, 易跃雄1   

  1. 1武汉大学中南医院 妇科 武汉市,43007
    2武汉大学第一临床学院 武汉市,430070
    3武汉大学第二临床学院 武汉市,430071
    4武汉大学中南医院 科研处 武汉市,430071
    5武汉大学人民医院眼科中心 武汉市,430070
  • 收稿日期:2025-08-08 发布日期:2026-01-29
  • 通讯作者: 易跃雄(E-mail:yiyuexiong@163.com)
  • 作者简介:#:共同第一作者
  • 基金资助:
    武汉大学中南医院住培/专培教学研究重点项目(No.ZP-202402),武汉大学中南医院科技创新培育基金(No.CXPY2022049)

Research Progress of Large Language Models in Case Generation,Personalized Teaching and Assessment

CONG Shang1,2#, BAI Wohan1,3#, CHEN Zhong4, SU Yu5, YI Yuexiong1   

  1. 1Department of Gynecology,Zhongnan Hospital of Wuhan University,Wuhan,430071,China
    2The First Clinical College,Wuhan University,Wuhan,430070,China
    3The Second Clinical College,Wuhan University,Wuhan,430071,China
    4Department of Scientific Research,Zhongnan Hospital of Wuhan University,Wuhan,430071,China
    5Ophthalmology Center,Renmin Hospital of Wuhan University,Wuhan,430070,China
  • Received:2025-08-08 Published:2026-01-29
  • Contact: YI Yuexiong(E-mail:yiyuexiong@163.com)
  • About author:#:These authors contributed equally as first author
  • Supported by:
    Key Teaching and Research Project for Residency/Fellowship Training of Zhongnan Hospital of Wuhan University(No.ZP-202402),Science and Technology Innovation Cultivation Fund of Zhongnan Hospital of Wuhan University(No.CXPY2022049)

摘要: 大语言模型(large language model,LLM)为医学教育带来新机遇。文章考察LLM在病例生成、个性化教学及智能评估方面的技术基础与应用手段。借助合理挑选模型、提示词,开展多模态融合与学术校正,LLM可生成仿真教学案例,利于临床推理训练;将学生画像与学习行为结合,LLM可实现路径推荐、内容定制的操作,提升教学适配度;LLM助力构建涵盖医学准确性、逻辑结构与因果推理方面的多维评分体系,产出个性化反馈内容。当前LLM仍面临幻觉与知识更新滞后等挑战,未来应加强人机协同、数据安全与标准资源建设,从而推动医学教育向智能化、规范化发展。

关键词: 大语言模型, 病例生成, 个性化教学, 教学评估, 医学教育

Abstract: Large language model(LLM)offers new opportunities for medical education.This paper examines its technical foundations and applications in case generation,personalized teaching,and intelligent assessment.By selecting appropriate models and prompts,and incorporating multimodal integration and academic validation,LLM can generate simulated teaching cases for clinical reasoning training.By combining student profiles and learning behaviors,LLM enables path recommendations and content customization,enhancing teaching adaptability.LLM also helps build multidimensional scoring systems focusing on medical accuracy,logical structure,and causal reasoning,providing personalized feedback.Despite challenges like hallucinations and outdated knowledge,future improvements should focus on human-machine collaboration,data security,and standardized resources to promote intelligent and standardized medical education.

Key words: large language model, case generation, personalized teaching, teaching assessment, medical education

中图分类号: