[1] LOPES J P,LIONAKIS M S.Pathogenesis and virulence of Candida albicans[J].Virulence,2022,13(1):89-121. [2] TALAPKO J,JUZBAŠIĆ M,MATIJEVIĆ T,et al.Candida albicans-the virulence factors and clinical manifestations of infection[J].J Fungi,2021,7(2):79. [3] KUMAMOTO C A,GRESNIGT M S,HUBE B.The gut,the bad and the harmless:Candida albicans as a commensal and opportunistic pathogen in the intestine[J].Curr Opin Microbiol,2020,56:7-15. [4] LEE Y,PUUMALA E,ROBBINS N,et al.Antifungal drug resistance:Molecular mechanisms in Candida albicans and beyond[J].Chem Rev,2021,121(6):3390-3411. [5] ZHANG M,ZHANG S.Mitogen-activated protein kinase cascades in plant signaling[J].J Integr Plant Biol,2022,64(2):301-341. [6] RONKINA N,GAESTEL M.MAPK-activated protein kinases:Servant or partner?[J].Annu Rev Biochem,2022,91:505-540. [7] MA Y,NICOLET J.Specificity models in MAPK cascade signaling[J].FEBS Open Bio,2023,13(7):1177-1192. [8] WAGNER A S,LUMSDAINE S W,MANGRUM M M,et al.Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans[J].PLoS Genet,2022,18(9):e1010405. [9] WAGNER A S,HANCOCK T J,LUMSDAINE S W,et al.Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner[J].PLoS Pathog,2021,17(8):e1009839. [10] DICKENSON R E,PELLON A,PONDE N O,et al.EGR1 regulates oral epithelial cell responses to Candida albicans via the EGFR-ERK1/2 pathway[J].Virulence,2024,15(1):2435374. [11] XU T,LIU Y,ZHANG W,et al.Specific cell subclusters of dental pulp stem cells respond to distinct pathogens through the ROS pathway[J].Front Cell Infect Microbiol,2024,14:1452124. [12] WU Y,DU S,BIMLER L H,et al.Toll-like receptor 4 and CD11 b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis[J].Cell Rep,2023,42(10):113240. [13] TAN Y,LIN Q,YAO J,et al.In vitro outcomes of quercetin on Candida albicans planktonic and biofilm cells and in vivo effects on vulvovaginal candidiasis.Evidences of its mechanisms of action[J].Phytomedicine,2023,114:154800. [14] BURTON J C,ANTONIADES W,OKALOVA J,et al.Atypical p38 signaling,activation,and implications for disease[J].Int J Mol Sci,2021,22(8):4183. [15] NIKOU S A,ZHOU C,GRIFFITHS J S,et al.TheCandida albicanstoxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways[J].Sci Signal,2022,15(728):eabj6915. [16] ZHANG Y.Fucoidan as a therapeutic agent for ulcerative colitis:Mechanisms of action and modulation of the gut microbiota[J].Front Cell Infect Microbiol,2025,15:1626614. [17] ZHU C,TANG L,ZHOU F,et al.Design,synthesis,and anti-infective effect against Candida Albicans of a new urolithin derivative[J].Chem Biodivers,2024:e202402966. [18] 王德,黄欣,赵力澜,等.白念珠菌MAPK信号通路研究进展[J].中国真菌学杂志,2013,8(4):252-256. WANG D,HUANG X,ZHAO L L,et al.Advances in the MAPK signaling pathway of Candida albicans[J].Chin J Mycol,2013,8(4):252-256. [19] FORD C B,FUNT J M,ABBEY D,et al.The evolution of drug resistance in clinical isolates of Candida albicans[J].eLife,2015,4:e00662. [20] EL-HOUSSAINI H H,ELNABAWY O M,NASSER H A,et al.Correlation between antifungal resistance and virulence factors in Candida albicans recovered from vaginal specimens[J].Microb Pathog,2019,128:13-19. [21] BEN-AMI R,GARCIA-EFFRON G,LEWIS R E,et al.Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance[J].J Infect Dis,2011,204(4):626-635. [22] XIE Y,HUA H,ZHOU P.Magnolol as a potent antifungal agent inhibits Candida albicans virulence factors via the PKC and Cek1 MAPK signaling pathways[J].Front Cell Infect Microbiol,2022,12:935322. [23] PANG L M,ZENG G,CHOW E W L,et al.Sdd3 regulates the biofilm formation of Candida albicans via the Rho1-PKC-MAPK pathway[J].mBio,2025,16(2):e03283-24. [24] ZHU S,SUN J,BI X,et al.Chemical composition of the traditional Chinese medicine compound(ICAM),its antifungal effects against Candida albicans,and the underlying Mechanisms:Therapeutic potential and safety evaluation for vulvovaginal Candidiasis[J].J Ethnopharmacol,2025,348:119844. [25] SUMLU E,AYDIN M,KORUCU E N,et al.Lichen extracts inhibit Candida albicans growth and biofilm formation via cAMP-PKA and Cek1 MAPK signaling pathway[J].Food Biosci,2025,71:107106. [26] WITCHLEY J N,PENUMETCHA P,ABON N V,et al.Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection[J].Cell Host Microbe,2019,25(3):432-443.e6. [27] AN L,TAN J,WANG Y,et al.Synergistic effect of the combination of deferoxamine and fluconazole in vitro and in vivo against fluconazole-resistant Candida Spp[J].Antimicrob Agents Chemother,2022,66(11):e00725-22. [28] WANG X,HE H,LIU J,et al.Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans[J].Am J Transl Res,2020,12(11):6988-7001. [29] ELHASI T,BLOMBERG A.Caffeine activates HOG-signalling and inhibits pseudohyphal growth in Saccharomyces cerevisiae[J].BMC Res Notes,2023,16(1):52. [30] LIU Z,MACALPINE J,ROBBINS N,et al.Construction of Candida albicans strains with ATP-analog-sensitive protein kinase a and Hog1[J].mSphere,2023,8(3):e00095-23. [31] NIRMALA B,OMAR B J.Microbial biofilm detection and differentiation by dual staining using maneval’s stain[J].Bio Protoc,2025,15(5):e5228. [32] YIN M,LI N,ZHANG L,et al.Pseudolaric acid B ameliorates fungal keratitis progression by suppressing inflammation and reducing fungal load[J].ACS Infect Dis,2023,9(6):1196-1205. [33] COSTA A C B P,OMRAN R P,LAW C,et al.Signal-mediated localization of Candida albicans pheromone response pathway components[J].G3,2021,11(3):jkaa033. [34] PARK Y K,SHIN J,LEE H Y,et al.Inhibition of Ras1-MAPK pathways for hypha formation by novel drug candidates in Candida albicans[J].bioRxiv,2021.https://doi.org/10.1101/2021.07.06.451239. [35] BARROSO V M,REIS J S,STEFANI H A,et al.2-aryloxazolines inhibit Candida clinical isolates growth and morphogenesis of Candida albicans and Candida tropicalis[J].Microbe,2024,3:100062. |